
Accesing the Fairness Level of the Training Set of a Blackbox
Graph Neural Network Model through Node Masking

Theodora Ko

September 2022

1 Introduction

Ranging from visualising social network service connections amongst people to modelling polypharmacy
side effects based on protein interactions, graphs are a useful form of data representation in various
different academic fields. Recently, there has been a growing interest in adapting a neural network model
on graph format data, or Graph Neural Networks (GNNs), and, moreover, interpretation of predictions
by GNNs. This paper focuses on machines that perform node classification. It describes an attempt to
debias the output data through node masking input data and demonstrates that correcting a training data
to reflect the group fairness may lead to higher accuracy. This paper proposes the challenge GNN poses
on Explainable Artificial Intelligence (XAI) and definitions used throughout the paper. Then, the paper
explains the framework of our approach to the problem and provides pseudocode of the actual codes used
in the experiment. The codes were implemented using mainly Pytorch Geometric (PyG) and NetworkX
libraries. Also, note that in our approach, although we used Planetoid dataset provided by PyG library
and GraphSAGE model, any dataset and any GNN model can be analysed using our proposed framework.

2 Problem Statement & Definitions

The inspiration for this paper rose from understanding the definition of a blackbox model. As useful
as artificial intelligence (AI) and machine learning (ML) become in terms of their efficiency in assessing
and producing predictions based on dense, big data, their accuracy is often met with scepticism due to
their rather unclear data-processing method, the reason ML models are considered a “black-box”. GNN
in particular, from producing the first set of hyperparameters through the first layer through producing
those of the final layer, has a particularly complex data transformation process due to the larger size of an
adjacency matrix. They are considered black-box as any GNN model’s behaviour cannot be comprehended
easily, regardless of having access to its structure and weights. This proposes challenges to expanding
explainability of AI over graph data, albeit their applicability.

3 The Proposed Framework

However, although we do not have access to the transformation process within the black box, we do have
access to the input and the output dataset, leading to our proposed framework. By manually masking a
node in the input training data at a time, we are able to take a look at the influence of a single node in the
overall output and, furthermore, access the fairness of our training data set.

1



3.1 Node Masking

More formally, we will define our approach as such:

Consider a node classification problem where we map some input space X with n many training points
from z1, · · · , zn to an output space Y. Given n training points, our blackbox GNN model will produce n
outputs that labels each training points with one of k many labels.

Our initial goal is to access the influence of a node to a model’s prediction. We define a test as masking
all nodes in the training set, one node at a time, and retraining the model and comparing the output
accuracy. We record the index of a node that led to an increase in output accuracy. We define such node
as an influential node. Then, we will perform the test multiple times to get a final list of influential nodes
and perform various tests based on it.

Algorithm 1 loo pipeline(model, dataset, data, train mask, test mask, which node, n epochs)

Output: compute the output accuracy of a new model trained based on a new training set that masks
the given node

new model← make a copy of model
new mask← Define a new mask by masking which node

train acc list, test acc list, loss list, misclassified, predictions ← train using new mask

n epochs times
loo output← new model(data.x, data.edge index)
loo accuracy← comput accuracy of the new model
return loo output, loo accuracy

Algorithm 2 check pipeline(dataset)

Output: find influential points of a datast by performing an individual node masking on all nodes in
the training set

influential nodes← an empty dictionary
train set← a list of node indces for nodes in the training set
original accuracy← compute the original accuracy by calling train(model, dataset)

for node ∈ train set do
new output, new accuracy← Call loo pipeline(node)
if original accuracy <= new accuracy then

influential nodes[node] = new accuracy

original accuracy = new accuracy

end if
end for
return influential nodes

2



Algorithm 3 repeat pipelines(model, dataset, data, epoch size, test num)

Output: find influential points of a datast by performing an individual node masking on all nodes in
the training set multiple times

influential nodes← empty dictionary
for test ∈ test num do

new influential nodes= call check pipeline(dataset)

influential nodes[test] = new influential nodes

end for
return influential nodes

Once we have collected a list of influential nodes, we ran several different tests to identify common features
of the influential nodes such as node similarities and node centralities. The most distinctive feature they
had in common was their node centrality indices in terms of their degrees. The following images are the
distribution of degree centrality and betweeness centrality of the training set of the Cora dataset.

Algorithm 4 node analysis(dataset, influential nodes, task)

Input: dataset, a list of influential nodes, and task designating which metrics to compute
Output: three lists of node indices in training, validation, and test set

graph← transform the torch dataset to NetworkX type
dictionary← empty dictionary

if task == ’node similarity’ then
sim← compute simrank similarity of the graph
return sim

else if task == ’Degree Centrality’ then
dictionary← compute degree centrality of all the nodes in the graph

else if task == ’Betweeness Centrality’ then
dictionary← compute betweeness centrality of all the nodes in the graph

end if

result← empty dictionary
for node ∈ influential nodes do

result[node] = dictionary[node]

end for
return result

3



3.2 Redefining Training Sets

Once we have identified influential nodes whose masking leads to an accuracy improvement, we redefine
training sets based on influential nodes and other metrics that we have found by analysing the influential
nodes. We have mainly trained the model based on four following sets. Note that Cora dataset has 7

labels and 140 nodes in total for the training set.

Algorithm 5 designated split(which nodes, num nodes, num test nodes)

Input:

1. which nodes: designated nodes to be masked for the training set

2. num test nodes: size of the test set

3. num nodes: number of the total nodes in the data

Output: three lists of node indices in training, validation, and test set

train mask, val mask, test mask← initialise a torch tensor of size num nodes with zeros
random nums← generate a torch tensor of random numbers from 0 to num nodes

count = 0

for i ∈ range(num nodes) do
if count == num test nodes then break
end if
if i ̸∈ which nodes then

test mask[i], val mask[i] = True, False
count += 1

end if
end for

for node ∈ which nodes do: train mask[node] = True val mask[node] = False
end for

return train mask, val mask, test mask

4



Algorithm 6 random split(num train nodes, num val nodes, num test nodes, num nodes)

Input:

1. num train nodes: size of the training set

2. num val nodes: size of the validation set

3. num test nodes: size of the test set

4. num nodes: number of the total nodes in the data

Output: three lists of node indices in training, validation, and test set

train mask, val mask, test mask← initialise a torch tensor of size num nodes with zeros
random nums← generate a torch tensor of random numbers from 0 to num nodes

for i ∈ range(num train nodes) do
set train mask[random nums[i]] = True

end for
for i ∈ range(num val nodes) do

set val mask[random nums[num train nodes + i]] = True
end for
for i ∈ range(num test nodes) do

set test mask[random nums[num val nodes + num train nodes + i]] = True
end for
return train mask, val mask, test mask

Algorithm 7 generate manual data(data, task, num test nodes)

Input:

1. data

2. task: ’25quantile’, ’75quantile’, ’random’, ’designated’

3. num test nodes: number of nodes in the test set

4. other arguments depending on task

Output:

1. if task == ’designated’, should give a list of nodes to use for training, validation, and test

2. if task == ’random’, should assign the size of the training, validation, and test data set

3. if task == ’quantile’, should give a size of the quantile and whether lower/higher than the quantile
we are taking

if task == ’random’ then
train, val, test← call random split()

else if task == ’designated’ then
train, val, test← call designated split()

else if task == ’quantile’ then
node list← call find nodes given quantile()
train, val, test← call designated split(node list)

end if
new data← create a torch data using Data(train mask=train, val mask=val, test mask=test),
return new data

5



3.2.1 Training sets based on node centrality

In terms of node centralities, we redefined the training set using

1. 20 nodes of highest degree centrality per class

2. 20 nodes of lowest degree centrality per class,

3. 20 nodes of highest betweeness centrality per class,

4. 20 nodes of lowest betweeness centrality per class.

Algorithm 8 sorted classification(dataset, dictionary)

Output: returns a dictionary that uses node labels as the keys and a sorted list of tuple (node, centrality
value) as the values

labels = number of labels
sorted dictionary← sort dictionary

centrality per label = {}
for node ∈ labels do: centrality per label[node] = {}

node classes = dataset[0].y.numpy()
for i ∈ range(len(sorted dictionary)) do

key = node classes[i]

centrality per label[key][i] = sorted dictionary[i]

return centrality per label

3.2.2 Training sets based on influential nodes

In terms of influential nodes, we redefined the training set using

1. the same training set excluding all influential nodes

2. the same training set excluding influential nodes that appeared more than once in the tests

3. the same training set excluding influential nodes that all tests had in common

3.2.3 Training sets based on node attributes

Furthermore, we have noticed that there is an uneven representation of the label distribution in the training
set, leading to redefine the training set using node centralities by reflecting the label ratio in the number
of nodes per class and repeating 3.2.1.

1. nodes of highest degree centrality per class,

2. nodes of lowest degree centrality per class,

3. 20 nodes of highest betweeness centrality per class,

4. 20 nodes of lowest betweeness centrality per class.

6



Algorithm 9 centrality training Ratio(dataset, target nodes, target type, centrality type,

high or low)

dictionary, ← node analysis(dataset, target nodes, centrality type)

num nodes← number of total nodes in the graph
centrality per class← sorted classification(dataset, dictionary, False)

train mask← empty list

for i in centrality per class.keys() do
ratio← round(len(centrality per class[i])/ num nodes · 140)
append train mask with centrality per class[:ratio * 140]

return x nodes(centrality per class, i, ratio, ’high or low)

end for

new ← generate manual data(data, ’designated’, which nodes=train mask, num test nodes =

1000)

new train acc, new predictions← train the model using new

return new train acc, new predictions =0

4 Experiment Results & Evaluation

Our experiment gave a range of accuracy improvements at varying degrees. In terms of influential nodes,
exclusion of individual or all influential nodes did not lead to significant improvement of the accuracy.
However, in terms of node centralities, nodes selected based on degree centralities led to better accuracy
than betweenness centrality and, moreover, led to highest accuracy improvement when the training set
also reflected the label distribution ratio of the entire input data. We correlate such to how there is a more
extreme skewness of the data in terms of degree centralities, leading to our focus on redefining a new
training set in terms of node degree centralities.

5 Conclusions

In conclusion, our experiment demonstrates the importance of having a training set that properly reflects
the distribution of node labels of the entire input data. By correcting the input data into reflecting the
distribution of node labels based on selected metrics, the user would be able to improve the prediction
accuracy. This also offers an insight to diagnosing a blackbox GNN model’s accuracy such that there is a
high possibility for a model with unfair training set to produce a faulty output prediction.

6 Acknowledgement

I would like to acknowledge my internship supervisor, Professor Claire L Donnat, and my internship
manager Zachary Rudolph. Without their help, it would have been impossible for me to conduct the
research and produce a tangible result.

7


	Introduction
	Problem Statement & Definitions
	The Proposed Framework
	Node Masking
	Redefining Training Sets
	Training sets based on node centrality
	Training sets based on influential nodes
	Training sets based on node attributes


	Experiment Results & Evaluation
	Conclusions
	Acknowledgement

